

Complete the Square

Created by:

www.pinpointlearning.co.uk

The Personalised GCSE Revision Site

1) Complete the Square: Easier

1) Write $x^2 + 8x + 16$ in the form $(x + a)^2$

$$(x + 4)(x + 4) = (x + 4)^2$$

.....(x + 4)².....(1 mark

2) Write $x^2 - 10x - 25$ in the form $(x - a)^2$

$$(x-5)(x-5) = (x-5)^2$$

.....(x-5)².....(1 mark)

3) Write $x^2 - 4x + 10$ in the form $(x - 2)^2 + a$

$$x^{2} - 4x + 10$$

$$= (x - 2)^{2} - 2^{2} + 10$$

$$= (x - 2)^{2} + 6$$

4) Write $x^2 + 6x - 4$ in the form $(x + a)^2 + b$

$$x^{2} + 6x - 4$$

$$= (x + 3)^{2} - 3^{2} - 4$$

$$= (x + 3)^{2} - 13$$

....(x + 3)² – 13....(2 marks)

1) Complete the Square: Medium

5) i) Write
$$x^2 - 16x + 9$$
 in the form $(x + a)^2 + b$
 $x^2 - 16x + 9$
= $(x - 8)^2 - 8^2 + 9$
= $(x - 8)^2 - 55$

.....
$$(x-8)^2-55$$
.....

(2 marks)

ii) Hence write down the coordinates of the minimum point of $y = x^2 - 16x + 9$

(1 mark)

6) a) Write
$$x^2 + 5x + 1$$
 in the form $(x + a)^2 + b$

$$x^{2} + 5x + 1$$

$$= \left(x + \frac{5}{2}\right)^{2} - \left(\frac{5}{2}\right)^{2} + 1$$

$$= \left(x + \frac{5}{2}\right)^{2} - \frac{25}{4} + \frac{4}{4}$$

$$= \left(x + \frac{5}{2}\right)^{2} - \frac{21}{4}$$

(3 marks)

b) Hence write down the coordinates of the minimum point of $f(x) = x^2 + 5x + 1$

$$\left(\begin{array}{ccc} -\frac{5}{2} & , & -\frac{21}{4} \end{array}\right)$$

(1 mark)

1) Complete the Square: Harder

7) i) Write $x^2 - 4x$ in the form $(x - b)^2 + c$

$$x^2 - 4x = (x - 2)^2 - 4$$

.....(
$$x-2$$
)² - 4.....

(2 marks)

ii) Hence, or otherwise, write $2x^2 - 8x$ in the form $a(x - b)^2 + c$

$$2x^{2} - 8x$$

$$= 2[x^{2} - 4x]$$

$$= 2[(x - 2)^{2} - 4]$$

$$= 2(x - 2)^{2} - 2 \times 4$$

$$= 2(x - 2)^{2} - 8$$

.....2
$$(x-2)^2-8$$
.....

(2 marks)

8) a) Write
$$3x^2 + 18x + 40$$
 in the form $a(x + b)^2 + c$
 $3x^2 + 18x + 40$
 $= 3[x^2 + 6x] + 40$
 $= 3[(x + 3)^2 - 9] + 40$
 $= 3(x + 3)^2 - 3 \times 9 + 40$
 $= 3(x + 3)^2 + 13$

.....3
$$(x + 3)^2 + 13$$
......(3 mark)

b) Hence, or otherwise, write down the coordinates of the turning point of the graph of $y = 3x^2 + 15x - 10$

(-3, 13)